Bem - Vindo A Quimica

Bem - Vindo A Quimica
Historia da quimica

sábado, 10 de abril de 2010

Modelo atômico de Rutherford
















Os progressos da química, ao fim do século XVIII, haviam reedificado a teoria atômica sobre alicerces mais científicos do que as meras especulações de Demócrito. Mas a concepção ainda era algo ingênua, como se cada átomo fosse apenas um pedacinho invisível de matéria, com as mesmas propriedades da substância em que estivesse integrado. Quase cem anos se passaram, antes que as propriedades do átomo começassem a ser desvendadas.
Em fins do século XIX, já se havia detectado a presença do elétron, partícula atômica dotada da menor quantidade de eletricidade, em termos absolutos. Nessa altura das pesquisas, a pergunta maior era a seguinte: como estão dispostos e integrados no átomo esses misteriosos elétrons? As respostas a essa e a muitas outras questões viriam a ser dadas por um físico neozelandês, que chegaria a provocar artificialmente a destruição e a transmutação de núcleos do átomo. Com seu trabalho, Ernest Rutherford deu importante contribuição para que a física atômica pudesse seguir o curso de evolução que a trouxe ao estágio de hoje.
Os primeiros tempos da vida de Rutherford enquadram-se no lugar-comum de tantas outras biografias de grandes personagens. O pai, um escocês que emigrara para a Nova Zelândia, vivia de consertos de carruagens, na cidade de Nelson, quando Ernest nasceu, a 30 de agosto de 1871. O futuro cientista era apenas o quarto filho do casal: outros nove viriam para onerar ainda mais o minguado orçamento da família.
Mas a Nova Zelândia era uma terra de novas oportunidades, nessa época. Num esforço empreendedor, o velho Rutherford conseguiu iniciar uma fiação de linho e com ela prosperou. Não que enriquecesse. Mas pôde dispor de recursos para custear a educação de alguns filhos, especialmente Ernest, que se destacava pela inteligência e versátil curiosidade: tanto obtinha boas notas em matemática, física e química, quanto em disciplinas literárias, especialmente latim, francês e inglês. Durante toda a vida nutriu verdadeira paixão pela leitura.
Aos dezessete anos, entrou na Universidade da Nova Zelândia, no anexo conhecido como Christ Church College. As despesas com livros e subsistência eram garantidas por modesta bolsa de estudo, além da renda de aulas particulares que dava a companheiros mais atrasados.
Quase todas as suas preocupações eram voltadas para o estudo, com uma importante exceção: Mary Newton, filha da viúva que mantinha a pensão onde Ernest morava. Fora esse namoro, dividia seu tempo entre bibliotecas e laboratórios. Interessado nas pesquisas de Hertz sobre ondas eletromagnéticas, montou algumas geringonças num canto da cantina universitária e tanto mexeu com os aparelhos rudimentares, que acabou colhendo material para alguns artigos, publicados por periódicos científicos da época.
Mas a Nova Zelândia, decididamente, não tinha muito a oferecer ao jovem cientista. A pesquisa científica moderna, de crescente complexidade, exigia equipamento caro, livros de circulação limitada, ambiente de colegas especializados. As grandes descobertas e as grandes invenções tendiam cada vez mais a surgir junto às grandes concentrações econômicas, em torno das quais desenvolveram-se os mais importantes centros científicos.
Para sua sorte, Rutherford teve oportunidade de acesso a um desses centros. O Príncipe Albert, marido da Rainha Vitória, tinha a preocupação de projetar-se como elemento atuante, para desfazer a tradicional imagem do príncipe consorte, tido corno personagem meramente figurativo. Dentro desse programa, ofereceu uma cátedra a jovens cientistas no Trinity College, da Inglaterra. Rutherford, recentemente diplomado mas já possuidor de certa reputação, candidatou-se ao lugar e foi escolhido. Para a longa viagem de Ernest, o pai teve que contrair dívidas e financiar parte do empreendimento.
Em 1893, com 22 anos, Rutherford já se aprofundava em matemática e física, sob a orientação de J. J. Thomson, descobridor do elétron.



Na época, uma equipe de cientistas do Laboratório Cavendish pesquisava o novo e fascinante mundo das radiações. Os raios X haviam sido descobertos recentemente por Roentgen e, em 1896, Becquerel havia relatado suas descobertas relativas a misteriosas radiações que emanavam de certos elementos.
Ao estudar as radiações do urânio, Rutherford descobriu que elas eram de pelo menos duas naturezas diferentes, pois o feixe se bipartia ao passar por um campo magnético e cada parte seguia então sentido oposto ao da outra. Propôs que elas fossem designadas como radiação alfa e radiação beta, denominações que se mantêm ainda hoje.
O fato de serem sensíveis à ação magnética sugeria que essas radiações fossem constituídas por feixes de partículas carregadas eletricamente, uma pista fundamental para estudos posteriores. A descoberta ampliou o prestígio científico de Rutherford e resultou na conquista da cátedra de Física na Universidade McGill, do Canadá. Com a situação financeira melhorada e consolidada, Ernest pôde desposar, em 1900, a noiva neozelandesa que o esperava desde os tempos de estudante universitário.
Entretanto, novas radiações iam sendo descobertas. Por exemplo, as do tório, que eram particularmente desconcertantes: ao contrário do que se verificava nos casos do óxido de urânio e da pechblenda, as radiações do tório não pareciam afetadas pela ação de campos magnéticos. Eram radiações eletromagnéticas, como a luz e os raios X. Esse tipo de radiação recebeu o nome de raios gama, por sua descoberta ter sucedido à dos raios alfa e beta.
A respeito dos raios gama, Rutherford formulou a hipótese de que a radiatividade, afinal, não se tratava de um fenômeno comum a todos os átomos, mas somente aos de certa categoria, que se desgastavam continuamente, ao perderem energia com as partículas emitidas. Essa transformação de teor energético de tais átomos, naturalmente, implicava a idéia de que os elementos radiativos, com o passar do tempo, transmutavam-se em outros elementos, de massa atômica mais baixa. Para verificação dessa revolucionária concepção da radiatividade, Rutherford empreendeu numerosas experiências, em colaboração com Soddy. De tais estudos resultou o livro Radiatividade, tratado fundamental dos problemas referentes ao assunto, verdadeiro marco na história do progresso científico.
Coberto de prestígio, Rutherford recebeu convites que lhe permitiram deixar o Canadá e voltar à Inglaterra, onde assumiu a direção do laboratório universitário de Manchester, então um dos mais bem aparelhados do mundo. Aí, a partir de 1907, pôde colaborar com outros físicos de renome, entre eles H. Geiger, inventor do famoso detetor de partículas ionizantes, que leva seu nome.
O fim do século XIX e início do século XX constituíram um tempo de seguidas revoluções científicas. No apogeu do colonialismo, a Europa atravessava uma fase de prosperidade econômica, que permitia a aplicação de recursos econômicos para sustento de cientistas e financiamento de pesquisas.
Pierre e Maríe Curie haviam isolado o rádio e descoberto o polônio, dois produtos da desintegração natural de átomos de elementos de maior massa. Para Rutherford, isso equivalia à descoberta de dois degraus de uma longa escada: à medida que ia emitindo radiação, o urânio deveria converter-se progressivamente em outros elementos; um era o rádio, o outro o polônio. E os demais? Onde terminaria, se é que de fato terminava, a escala de desintegrações sucessivas?
Rutherford e seus colaboradores iniciaram estudos a respeito e, em poucos meses, conseguiram descrever todas as famílias radiativas. No degrau mais alto, o urânio; no mais baixo de todos, o chumbo, em que já não mais existia radiatividade. Entre esses dois extremos, todos os elementos radiativos intermediários, resultantes da "degradação" radiativa, isto é, da desintegração. Foi um importante trabalho, que resultou no reconhecimento universal do mundo científico e na maior recompensa que se pode dar a um pesquisador, o prêmio Nobel de Física, conferido a Rutherford em 1908.
Mas, ao contrário do que ocorreu a tantos outros cientistas, o Prêmio Nobel não marcou o coroamento da carreira de Rutherford. Suas maiores contribuições ainda estavam por vir.





Em 1908, Rutherford realizou uma famosa experiência, na qual bombardeou com partículas alfa uma folha de ouro delgadíssima.
Verificou que a grande maioria das partículas atravessava a folha sem se desviar. Concluiu, com base nessas observações e em cálculos, que os átomos de ouro - e, por extensão, quaisquer átomos - eram estruturas praticamente vazias, e não esferas maciças. Numa minúscula região de seu interior estaria concentrada toda a carga positiva, responsável pelo desvio de um pequeno número de partículas alfa.
Distante dessa região, chamada núcleo, circulariam os elétrons. Isso convenceu Rutherford de que o átomo deveria ser um sistema semelhante ao solar: um núcleo central grande, rodeado de partículas móveis. Esse é o famoso modelo atômico de Rutherford.



Baseado na concepção de Rutherford, o físico dinamarquês Niels Bohr idealizaria mais tarde um novo modelo atômico.
Com o advento da Primeira Guerra Mundial, Rutherford interrompeu seus trabalhos. Enquanto muitos de seus alunos e colaboradores foram convocados, ele próprio teve que se ocupar com pesquisas de objetivo militar, a serviço do Almirantado Britânico, setor de guerra anti-submarina. Só depois da guerra foi que o cientista retomou seus estudos a respeito do núcleo do átomo. Mais experiente nas manipulações com partículas alfa, acabou por realizar um velho sonho dos alquimistas, o da conversão de um elemento natural em outro.
Ao converter nitrogênio em oxigênio, por bombardeamento eletrônico, Rutherford conseguia realizar a primeira transmutação provocada artificialmente.
Rutherford viveu numa época em que a tecnologia ainda não havia assumido a importância que tem hoje. Pensava-se em ciência ainda com certo romantismo. Os cientistas ainda não sofriam o peso das solicitações de ordem prática, tal como atualmente acontece.
Como Einstein e outros contemporâneos, Rutherford viveu bastante despreocupado em relação a problemas individuais, num estilo de dignidade afável, sempre mantendo um moderado senso de humor. Quando morreu, a 19 de outubro de 1937, muitos foram os que lembraram, nos necrológios, o que dele haviam dito anos antes: "Sempre carregou a glória com indiferença".
Fonte: geocities.yahoo.com.br


















Modelo atômico de Rutherford

O modelo atômico de Rutherford, também conhecido como modelo planetário do átomo, é uma teoria sobre a estrutura do átomo proposta pelo físico neozelandês Ernest Rutherford, e está intimamente relacionado à experiência de Rutherford. Segundo esta teoria, o átomo teria um núcleo positivo, que seria muito pequeno em relação ao todo mas teria grande massa e, ao redor deste, os elétrons, que descreveriam órbitas circulares em altas velocidades, para não serem atraídos e caírem sobre o núcleo. A eletrosfera - local onde se situam os elétrons - seria cerca de dez mil vezes maior do que o núcleo atômico, e entre eles haveria um espaço vazio.
A falha do modelo de Rutherford é mostrada pela teoria do electromagnetismo, de que toda partícula com carga elétrica submetida a uma aceleração origina a emissão de uma onda electromagnética.
O elétron em seu movimento orbital está submetido a uma aceleração centrípeta e, portanto, emitirá energia na forma de onda eletromagnética.
Essa emissão, pelo Princípio da conservação da energia, faria com que o elétron perdesse energia cinética e potencial, caindo progressivamente sobre o núcleo, fato que não ocorre na prática. Esta falha foi corrigida pelo Modelo atômico de Bohr.
Fonte: pt.wikipedia.org

Por que os fogos de artifícios são coloridos?

Veja como o modelo atômico proposto por Bohr pode ajudá-lo a encontrar uma resposta.
Clique nas linhas pontilhadas e veja o que acontece. Em seguida responda as questões apresentadas.


O que acontece quando o elétron salta de um nível mais interno para um mais externo?• E quando ele salta de um nível mais externo para um mais interno?• Como se comporta a variação de energia do elétron, mostrada no gráfico ao lado, em relação as sua posição nos níveis de energia na eletrosfera?
Observe com atenção o que acontece quando o elétron salta do 6°, 5°, 4° e do 3° nível para o 2° nível de energia.
• Todas as linhas espectrais mostradas no espectro apresentam a mesma cor? • Que relação você poderá fazer entre a cor da linha espectral e a quantidade de energia liberada no salto eletrônico?
Agora que você já sabe como o espectro de um elemento é formado e já conhece o espectro de alguns elementos, que resposta daria a uma pessoa que perguntasse por que os fogos de artifícios são coloridos?

Neste ponto chegamos à Segunda lei de Bohr


Segunda Lei: um átomo irradia energia quando um elétron salta de uma órbita de maior energia para uma de menor energia.
Além disso, um átomo absorve energia quando um elétron é deslocado de uma órbita de menor energia para uma órbita de maior energia.
Em outras palavras, os elétrons saltam de uma órbita permitida para outra à medida que os átomos irradiam ou absorve energia. As órbitas externas do átomo possuem mais energia do que as órbitas internas. Por conseguinte, se um elétron salta da órbita 2 para a órbita 1, há emissão de luz, por outro lado, se luz de energia adequada atingir o átomo, esta é capaz de impelir um elétron da órbita 1 para a órbita 2. Neste processo, a luz é absorvida.


quinta-feira, 1 de abril de 2010

Órbitas de Bohr para o átomo de hidrogênio:

Entretanto, as órbitas extremamente distantes, tais como a décima, a vigésima ou a centésima órbita, são improváveis. É bastante provável que um elétron em uma órbita distante fosse perdido pelo átomo. Em outras palavras outro átomo o arrebataria, ou uma onda de energia eletromagnética o deixaria a esmo como um "elétron livre" movendo-se através do espaço entre os átomos. Por conseguinte, as órbitas mais importantes, aquelas que desempenham um papel principal na produção do espectro linear de um átomo, são as órbitas mais internas.
É uma lei bastante estranha esta de os elétrons poderem ocupar apenas determinadas órbitas fixas. Isto significa dizer que a maioria das órbitas seriam impossíveis. Um elétron de hidrogênio não poderia girar numa órbita a 0,250, 1,000 ou 2,150 Ângstron; as únicas órbitas permitidas são as enumeradas na figura.
Este é um comportamento muito diferente daquele dos objetos que nos cercam. Suponha que uma bola arremessada de uma sala só pudesse seguir 2 ou 3 trajetos determinados, em vez das centenas de trajetos diferentes que ela realmente pode seguir. Seria como se a sala tivesse trajetos invisíveis orientando a bola. Assim, a lei de Bohr afirma que os elétrons agem como se o espaço ao redor do núcleo atômico possuísse trajetos invisíveis. Mas Bohr não deu justificativa para esta estranha situação.

Vamos Agora entender um pouco sobre: MODELO ATÔMICO DE BOHR

Os problemas com o modelo do átomo de Rutherford foram resolvidos de uma forma surpreendente pelo jovem físico dinamarquês Niels Bohr. Em 1912, Bohr determinou algumas leis para explicar o modelo pelo qual os elétrons giram em órbita ao redor do núcleo atômico. O que tornou sua abordagem especialmente interessante foi que ele não tentou justificar suas leis ou encontrar razões para elas. As leis faziam muito pouco sentido, quando comparadas com as teorias já bem estabelecidas da Física. Com efeito, Bohr dizia: "Aqui estão algumas leis que parecem impossíveis, porém elas realmente correspondem ao modo como os sistemas atômicos parecem funcionar, de forma que vamos usá-las.
Bohr começou por presumir que os elétrons em órbita não descreviam movimento em espiral em direção ao núcleo. Isto contradizia tudo que se conhecia de eletricidade e magnetismo, mas adaptava-se ao modo pelo qual as coisas aconteciam.
Nesta ocasião Bohr determinou suas duas leis para o que realmente ocorre.
Primeira Lei: os elétrons podem girar em órbita somente a determinadas distâncias permitidas do núcleo.
Considere o átomo de hidrogênio, por exemplo, que possui apenas um elétron girando ao redor do núcleo. Os cálculos de Bohr mostraram quais as órbitas possíveis. A figura mostra as cinco primeiras destas órbitas permitidas. A primeira órbita situa-se um pouco além de umÂngstron do núcleo (0,529 Ângstron). A segunda órbita permitida situa-se em um pouco mais de que 2 Ângstron do núcleo (2,116 Ângstron).
Embora a figura mostre apenas as cinco primeiras órbitas, não existe limite para o número de órbitas teoricamente possíveis. Por exemplo, a centésima órbita de Bohr para o átomo de hidrogênio estaria dez mil vezes mais afastada do núcleo do que a primeira órbita, a uma distância de 5.290 Ângstron.

John Dalton

John Dalton (1766-1844) é considerado o fundador da teoria atômica moderna. Nasce em Eaglesfield, Inglaterra. Menino prodígio, aos 12 anos de idade substitui seu professor na Quaker's School de Eaglesfield. Dedica toda sua vida ao ensino e à pesquisa.
Leciona em Kendal e Manchester. Desenvolve trabalhos significativos em vários campos: meteorologia, química, física, gramática e lingüística. Seu nome passa à história da ciência tanto por suas teorias químicas quanto pela descoberta e descrição de uma anomalia da visão das cores: o daltonismo. Observador atento, Dalton percebe, ainda jovem, sua cegueira para algumas cores.
Pesquisa o fenômeno em outras pessoas e observa que a anomalia mais comum é a impossibilidade de distinguir o vermelho e o verde. Em alguns casos, a cegueira cromática é mais acentuada para o campo do vermelho (protanopsia). Em outros, para o campo do verde (deuteranopsia). Certas pessoas sofrem de daltonismo apenas em circunstâncias especiais, e poucas são cegas para todas as cores.

O modelo de Dalton baseava-se nas seguintes hipóteses

Tudo que existe na natureza é composto por diminutas partículas denominadas átomos;
- Os átomos são indivisíveis e indestrutíveis;
- Existe um número pequeno de elementos químicos diferentes na natureza;
- Reunindo átomos iguais ou diferentes nas variadas proporções, podemos formar todas as matérias do universo conhecidos;
Para Dalton o átomo era um sistema contínuo.
Apesar de um modelo simples, Dalton deu um grande passo na elaboração de um modelo atômico, pois foi o que instigou na busca por algumas respostas e proposição de futuros modelos.

A matéria é constituída de diminutas partículas amontoadas como laranjas

Vários pensadores propuseram que a matéria seria constituída por átomos, assim como havia pensado Demócrito e Leucipo. Todavia, até a primeira metade do século XIX, esse modelo ainda não era aceito pela comunidade científica.
Em 1808, o cientista inglês John Dalton publicou um livro apresentando sua teoria sobre a constituição atômica da matéria. O seu trabalho foi amplamente debatido pela comunidade científica e, apesar de ter sido criticado pelos físicos famosos da época, a partir de segunda metade do século XIX os químicos começaram a se convencer, pela inúmeras evidências, de que tal modelo era bastante plausível.

Faltam Só 98 Dias!!!!!!!!!!!!

Ki bom que faltam 98 dias para a nossa feira de ciência do Catarina jorge Gonçalves, vai ter muitas experiência bacana!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

MODELO ATÔMICO DE DALTON

Todo modelo não deve ser somente lógico, mas também consistente com a experiência. No século XVII, experiências demonstraram que o comportamento das substâncias era inconsistente com a idéia de matéria contínua e o modelo de Aristóteles desmoronou.
Em 1808, John Dalton, um professor inglês, propôs a idéia de que as propriedades da matéria podem ser explicadas em termos de comportamento de partículas finitas, unitárias. Dalton acreditou que o átomo seria a partícula elementar, a menor unidade de matéria.
Surgiu assim o modelo de Dalton: átomos vistos como esferas minúsculas, rígidas e indestrutíveis. Todos os átomos de um elemento são idênticos.

sexta-feira, 26 de março de 2010

Vamos agora conhecer um pouco da vida e obra dele.!!!!!!!!!!

Dmitri I. Mendeleev nasceu na cidade de Tobolsk na Sibéria. Era o filho caçula de uma família de 17 irmãos. Seu pai, Ivan Pavlovich Mendeleev era diretor da escola de seu povoado, perdeu a visão no mesmo ano de seu nascimento. Como consequência perdeu seu trabalho.
Já que seu pai recebia uma pensão insuficiente sua mãe, Maria Dmitrievna Mendeleeva, passou a dirigir uma fábrica de cristais fundada por seu avô, Pavel Maximovich Sokolov. Na escola, desde cedo destacou-se em Ciências (nem tanto em ortografia). Um cunhado, exilado por motivos políticos e um químico da fábrica inspiraram sua paixão pela ciência. Depois da morte de seu pai um incêndio destruiu a fábrica de cristais. Sua mãe decidiu não reconstruir a fábrica mas sim investir suas economias na educação do filho.Nessa época todos os seus irmãos, exceto uma irmã, já viviam independentemente. Sua mãe então mudou-se com ambos para Moscovo a fim de que ele ingressasse na [[universidade de Moscovo] o que não conseguiu. Talvez devido ao clima político vivido pela Rússia naquele momento a universidade só admitia moscovitas.
Foram então para São Petersburgo, onde a situação era precisamente a mesma, não se admitiam estudantes de outras regiões, porém sua mãe descobriu que o diretor do Instituto Pedagógico Central (principal escola formadora de professores da Rússia da época) era amigo de seu finado marido, portanto, onde a burocracia frustrava, o favoritismo mandava e Dmitri consegue uma vaga.O Instituto Pedagógico Central ficava nos mesmos prédios da Universidade de São Petersburgo e tinha em seu quadro docente muitos professores da própria universidade, dentre eles o famoso físico alemão Heinrich Lenz. Interessou-se pela química graças ao prestigiado professor Alexander Voskresenki, que passou seus últimos anos de vida em uma enfermaria devido a um falso diagnóstico de tuberculose. Ainda assim graduou-se em 1855 como primeiro de sua classe.
Em 1859 conseguiu uma verba do governo para estudar no exterior por dois anos. Primeiro foi à Paris estudar sob Henri Victor Regnault, um dos maiores experimentalistas europeus da época (consta que Regnault havia feito várias descobertas importantes, como o princípio da conservação de energia, mas seus estudos haviam sido destruídos e Regnault não conseguiu recuperar antes de sua morte).
No ano seguinte, Mendeleev seguiu para a Alemanha estudar com Gustav Kirchhoff e Robert Wilhelm Bunsen, inventores do espectroscópio - importante instrumento para descoberta de novos elementos daquela época - e do até hoje utilizado bico de Bunsen.
O comportamento explosivo de Mendeleev tornou-se sua ruína. Com pouquíssimo tempo de convivência, brigou com Kirchoff e desistiu das aulas, porém, continuou na Alemanha onde residia em um pequeno apartamento que transformou em laboratório. Neste laboratório improvisado, trabalhando sozinho, limitou-se a estudar o dissolução do álcool em água e fez importantes descobertas sobre estruturas atômicas, valência e propriedades dos gases. Em 1860, pouco antes de voltar à Rússia, participou do 1º Congresso Internacional de Química da Alemanha, em Karlsruhe, onde foi decido por influência do químico italiano Stanislao Cannizzaro que o padrão de abordagem dos elementos químicos seria o peso atômico.Casa-se pela primeira vez, por pressão da irmã, em 1862 com Feozva Nikítichna Lescheva com a qual teve três filhos um dos quais faleceu. Esta foi uma união infeliz e, em 1871, separaram-se. Casou-se pela segunda vez em 1882 com Ana Ivánovna Popova 26 anos mais jovem. Tiveram quatro filhos. Teve de enfrentar a oposição da família de Ana e o facto de que Feozva negava-se a dar-lhe o divórcio.
Em 1869, enquanto escrevia seu livro de química inorgânica, Dimitri Ivanovich Mendeleev organizou os elementos na forma da tabela periódica actual. Ele criou uma carta para cada um dos 63 elementos conhecidos. Cada carta continha o símbolo do elemento, a massa atômica e as suas propriedades químicas e físicas. Colocando as cartas numa mesa, organizou-as em ordem crescente de massas atómicas, agrupando-as em elementos de propriedades semelhantes. Tinha então acabado de formar a tabela periódica.
Esta tabela de Mendeleev tinha algumas vantagens sobre outras tabelas ou teorias antes apresentadas, mostrando semelhanças numa rede de relações vertical, horizontal e diagonal. A classificação de Mendeleev deixava ainda espaços vazios, prevendo a descoberta de novos elementos.A tabela de Mendeleev serviu de base para a elaboração da actual tabela periódica, que além de catalogar os 118 elementos conhecidos, fornece inúmeras informações sobre o comportamento de cada um.
Mendeleev ordenou os 60 elementos químicos conhecidos de sua época na ordem crescente de peso atômico de certa forma que em uma mesma vertical ficavam os elementos com propriedades químicas semelhantes, constituindo os grupos verticais, ou as chamadas famílias químicas. O trabalho de Mendeleev foi um trabalho audacioso e um exemplo extraordinário de intuição científica. De todos os trabalhos apresentados que tiveram influência na tabela periódica o de Mendeleev teve maior perspicácia.
Ele foi um cientista que defendeu a origem inorgânica do petróleo.

O facto capital para se notar é que o petróleo nasceu nas profundezas da Terra, e é somente lá é que devemos procurar sua origem.
— Dmitri Mendeleiev
Viajou por toda a Europa visitando vários cientistas. Em 1902 foi a Paris e esteve no laboratório do casal Pierre e Marie Curie.
Faleceu em 1907 já praticamente cego.

Para entender um pouco sobre a história da Tabela Periódica


A tabela periódica consiste em um ordenamento dos elementos conhecidos de acordo com as suas propriedades físicas e químicas, em que os elementos que apresentam as propriedades semelhantes são dispostos em colunas. Este ordenamento foi proposto pelo químico russo Dmitri Mendeleiev , substituindo o ordenamento pela massa atômica. Ele publicou a tabela periódica em seu livro Princípios da Química em 1869, época em que eram conhecidos apenas cerca de 60 elementos químicos.
Em 1930, através do trabalho do quimico inglês Henry G. J. Monsey, que mediu as freqüências de linhas espectrais específicas de raios X de um número de 40 elementos contra a carga do núcleo (Z), pôde-se identificar algumas inversões na ordem correta da tabela periódica, sendo, portanto, o primeiro dos trabalhos experimentais a ratificar o modelo atômico de Bohr. O trabalho de Moseley serviu para dirimir um erro em que a Química se encontrava na época por desconhecimento: até então os elementos eram ordenados pela massa atômica e não pelo número atômico.

Tabela Periódica


A Tabela Periódica dos elementos químicos é a disposição sistemática dos elementos, na forma de uma tabela , em função de suas propiedades.São muito úteis para se preverem as característica e tendências dos Átomos. Permite, por exemplo , prever o comportamento de átomo e das moléculas, deles formadas , ou entender por certos átomos são extretamente reativos enquanto outros são praticamente inerte.Permite prever propriedades como Eletronegatividade , raio iônico , ernegia de ionização.



Algumas imagens de eletrólise

Humpyh Davy
Nascimento: 17 de dezembro de 1778 Penzance

Morte: 29 de maio de 1829(50 anos)Genebra

Campo(s): Química

Prêmios: Medalha Rumford (1816),
Medalha Real (1827)

A historia da Eletrolise

As Primeiras experiência envolvendo a eletrólise foram iniciada pelo quimico inglês Humphry Davy , que em 1778 obteve uma corrente elétrica atraves do carbonato de potássio(potassa) fundido.

Em 1808 , através de sugestões dada por Jõns Jacob Berzelius, Davy efetuou melhorias no processo , e consegui isolar outros elementos a partir dos seus oxidos como o magnésio e o Bário.

quarta-feira, 24 de março de 2010

Eletrolise

Eletrolise (português brasileiro) ou Electrólise (português europeu), são processos que separam os elementos quimicos usando a eletricidade. De maneira súmaria , procede-se priomeiro á decompisção ( ionização ou dissociação) do composto em íons. Em muitos casos , dependendo da substância a ser eletrolisadas e do meio em que ela ocorre , além de formar elementos ocorre também a formação de novos composto.

A palavra eletrolise é originaria dos radicais "eletro"(eletricidade) e "lisis"(decomposição), ou seja , decomposição por eletricidade.